Syngas generation from n-butane with an integrated MEMS assembly for gas processing in micro-solid oxide fuel cell systems.

نویسندگان

  • A Bieberle-Hütter
  • A J Santis-Alvarez
  • B Jiang
  • P Heeb
  • T Maeder
  • M Nabavi
  • D Poulikakos
  • P Niedermann
  • A Dommann
  • P Muralt
  • A Bernard
  • L J Gauckler
چکیده

An integrated system of a microreformer and a carrier allowing for syngas generation from liquefied petroleum gas (LPG) for micro-SOFC application is discussed. The microreformer with an overall size of 12.7 mm × 12.7 mm × 1.9 mm is fabricated with micro-electro-mechanical system (MEMS) technologies. As a catalyst, a special foam-like material made from ceria-zirconia nanoparticles doped with rhodium is used to fill the reformer cavity of 58.5 mm(3). The microreformer is fixed onto a microfabricated structure with built-in fluidic channels and integrated heaters, the so-called functional carrier. It allows for thermal decoupling of the cold inlet gas and the hot fuel processing zone. Two methods for heating the microreformer are compared in this study: a) heating in an external furnace and b) heating with the two built-in heaters on the functional carrier. With both methods, high butane conversion rates of 74%-85% are obtained at around 550 °C. In addition, high hydrogen and carbon monoxide yields and selectivities are achieved. The results confirm those from classical lab reformers built without MEMS technology (N. Hotz et al., Chem. Eng. Sci., 2008, 63, 5193; N. Hotz et al., Appl. Catal., B, 2007, 73, 336). The material combinations and processing techniques enable syngas production with the present MEMS based microreformer with high performance for temperatures up to 700 °C. The functional carrier is the basis for a new platform, which can integrate the micro-SOFC membranes and the gas processing unit as subsystem of an entire micro-SOFC system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conventional and Advanced Exergetic and Exergoeconomic Analysis of an IRSOFC-GT-ORC Hybrid System

Due to the necessity of using highly efficient power generation systems to reduce fuel consumption and air pollution, the integration of different energy systems is promising modification to achieve higher efficiency. In this paper, the integration of an Internal Reforming Solid Oxide Fuel Cell (IRSOFC)-Gas Turbine (GT)-Organic Rankine Cycle (ORC) system has been proposed. In this regard, therm...

متن کامل

Lattice Boltzmann modeling of two component gas diffusion in solid oxide fuel cell

In recent years, the need for high efficiency and low emission power generation systems has made much attention to the use of fuel cell technology. The solid oxide fuel cells due to their high operating temperature (800 ℃ -1000 ℃) are suitable for power generation systems.Two-component gas flow (H2 and H2O) in the porous media of solid oxide fuel cell’s anode have been modeled via lattice Boltz...

متن کامل

Simulation of a Solid Oxide Fuel Cell with External Steam Methane Reforming and Bypass

Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. The eligibility of a combined heat and power (CHP) system has been investigated as a new power generation methode, in this study. Natural gas fueled SOFC power systems via methane steam reforming (MSR) yield electrical conversion efficiencies exceeding 50% and...

متن کامل

Model Reduction of a Solid Oxide Fuel Cell (SOFC) for Control Purposes

Fuel cells belong to an avant-garde technology family for a wide variety of applications including micro-power, transportation power, stationary power for buildings and other distributed generation applications. The first objective of this contribution is to find a suitable reduced model of a Solid Oxide Fuel Cell (SOFC). The derived reduced model is then used to design a state estimator. I...

متن کامل

Modeling and Analysis of a Solid Oxide Fuel Cell Based Trigeneration System with an Oxygenated Fuel by Using an Exergoeconomic Methodology for Power, Heating and Cooling Production

In the present study, thermo-economic analysis of a combined solid oxide fuel cell (SOFC) with a gas turbine, a generator-absorber heat exchanger (GAX) and heating process heat exchanger for heating, cooling and power production as a tri-generation system is conducted. Also, an external steam reformer is applied to convert methanol as oxygenated fuel to hydrogen for the electrochemical process ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 12 22  شماره 

صفحات  -

تاریخ انتشار 2012